Characterization of Subthreshold Voltage Fluctuations in Neuronal Membranes
نویسندگان
چکیده
Synaptic noise due to intense network activity can have a significant impact on the electrophysiological properties of individual neurons. This is the case for the cerebral cortex, where ongoing activity leads to strong barrages of synaptic inputs, which act as the main source of synaptic noise affecting on neuronal dynamics. Here, we characterize the subthreshold behavior of neuronal models in which synaptic noise is represented by either additive or multiplicative noise, described by Ornstein-Uhlenbeck processes. We derive and solve the Fokker-Planck equation for this system, which describes the time evolution of the probability density function for the membrane potential. We obtain an analytic expression for the membrane potential distribution at steady state and compare this expression with the subthreshold activity obtained in Hodgkin-Huxley-type models with stochastic synaptic inputs. The differences between multiplicative and additive noise models suggest that multiplicative noise is adequate to describe the high-conductance states similar to in vivo conditions. Because the steady-state membrane potential distribution is easily obtained experimentally, this approach provides a possible method to estimate the mean and variance of synaptic conductances in real neurons.
منابع مشابه
Ja n 20 05 Comment on : Characterization of subthreshold voltage fluctuations in neuronal membranes by M . Rudolph and A .
In a recent paper, Rudolph and Destexhe (Neural Comp. 15, 2577-2618, 2003) studied a leaky integrator model (i.e. an RC-circuit) driven by correlated (“colored”) Gaussian conductance noise and Gaussian current noise. They derived an expression for the stationary probability density of the membrane voltage. Here we show by standard analysis of solvable limit cases and by numerical simulations th...
متن کاملStatistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise.
Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of pulses from their presynaptic populations. These synaptic pulses are mediated by conductance changes and therefore lead to increases or decreases of the neuronal membrane potential with amplitudes that are dependent on the voltage: synaptic noise is multiplicative. The statistics of the membrane ...
متن کاملControlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons
We investigate the regularity of spontaneous spiking activity on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise and fraction of blocked voltage-gated sodium and potassium ion channels embedded in neuronal membranes. We show that there exists an optimal fraction of shortcut links between physically distan...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 15 11 شماره
صفحات -
تاریخ انتشار 2003